Normal curve into a Monte Carlo function in R -


i have monte carlo problem need compare normal curve, have this:

monte_carlo <- function(t){    k <- 2   beta1 <- 0.131                      beta2 <- 0.406   betaa <- c(beta1,beta2)   beta<-as.vector(betaa)   phi <- 0.6   c <- 2   ni<- as.vector(rnorm(t))   x0 <- rnorm(1,(c/(1-phi)),(1/(1-(phi)^2)^(0.5)))    # gerar x   x_3 <- rep(0,t)   x_3[1]<- c+phi*x0+ni[1]   for(i in 2:t){     x_3[i]<-c+phi*x_3[i-1]+ni[i]   }    # fazer o loop   n <- 100000   vest <- matrix(,100000,k)   vt <- vest     for(j in 1:n){     # gerando e     e <- as.vector(rnorm(t))              # gerando y     y<- rep(0,t)     for(i in 1:t){       y[i]<- beta1+beta2*x_3[i]+e[i]     }      x <- matrix(1,t,k)     x[,2]<- x_3     # estimando b por mqo     b.est<- function(y,x){       xy <- t(x)%*%y                  # x'y        xxi <- solve(t(x)%*%x)          #(x'x)^(-1)       b <- as.vector(xxi%*%xy)       return(b)     }       # chamando os resultados      vest[j,] <- b.est(y,x)    }    # obtendo médias   b_mean <- colmeans(vest)     # plotando os gráficos    g_b1<- plot(density(vest[,1]))    g_b2<-plot(density(vest[,2]))     table <- cbind(medias_dos_estimadores=b_mean, grafico_b1=g_b1, grafico_b2=g_b2)    return(list(b=table)) } 

and get, example, this:

> monte_carlo(23) $b      medias_dos_estimadores media_das_estatisticas_t [1,]              0.1230776             -0.008260573 [2,]              0.4076724              0.001772357 

enter image description here enter image description here

however, need plot normal curve compare. how should plot it?

ps.: sd in case given by:

var.est<- function(y,x){   x <- as.matrix(cbind(int=1,x))   y <- as.vector(y)    t <- length(y)   k <- ncol(x)-1    xy <- t(x)%*%y                  # x'y    xxi <- solve(t(x)%*%x)          #(x'x)^(-1)   b <- as.vector(xxi%*%xy)        #estimated coefficients    yhat <- as.vector(x%*%b)        #predicted values y   res <- y-yhat                   #model residual    sse <- t(res)%*%res             # or sum(res^2) t(res)%*%res   sigma2 <- sse/(t-k)   s2 <- sigma2[1,1]    est.var <- s2*solve(crossprod(x)) #coefficient standard errors   var.est <- rep(0,k)   for(i in c(1:k)){     var.est[i] <- est.var[i,i]   }   return(var.est) }